

CM-SAF TOA radiation science report

Didier . Caprion @ oma.be

Royal Meteorological Institute of Belgium

What are we going to talk about...

Overview

- ops reminder
- Comparisons
- Aerosols

- Brief reminder on ops status.
- Comparison CMSAF TOA products with CERES ones.
 - Instantaneous data: GERB/CERES SSF.
 - Monthly mean data: CMSAF/CERES ES9.
 - Summary.
- ★ (new) Aerosol products:
 - What are they ?
 - How to produce them ?
 - First results and perspectives.

Overview

ops reminder

Comparisons

Aerosols

- GERB current situation:
 - Data available till today (um!!!)
 - Actually, from 14th of February: only available at night i.e. from 2am till 7am
 - Data processed till December 2007
- ★ CERES current situation:
 - ES9 data available till August 2007

No CMSAF TOA data available since August 2007 !!!

How do we do ?

Overview

ops reminder

Comparisons

Methode

Instantaneous data

Monthly mean data

summary

Aerosols

We compute :

ratio = $\frac{\langle Flux_{CMSAF/GERB} \rangle}{\langle Flux_{CERES} \rangle}$

Only for viewing angle $< 70^{\circ}$

Instantaneous:

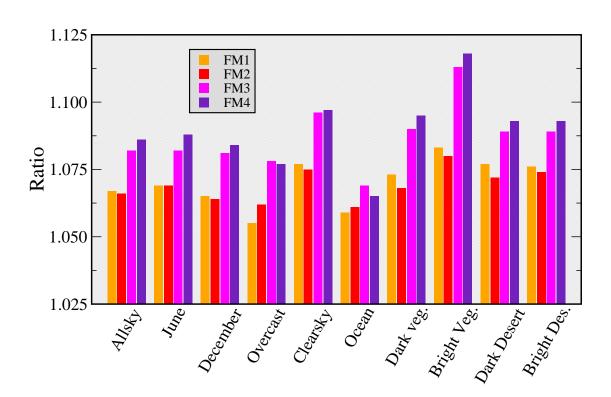
- CERES SSF -Edition 2- revision 1 for FM1, FM2, FM3, FM4
- **GERB HR Version 3**
- June and December 2004
- Monthly mean: \star
 - CERES ES9 Edition 1 for FM1, FM2, FM3, FM4
 - **CMSAF 120**
 - From February 2004 till December 2006

Shortwave:

Overview

ops reminder

Comparisons


Methode

Instantaneous
 data

 Monthly mean data

summary

Aerosols

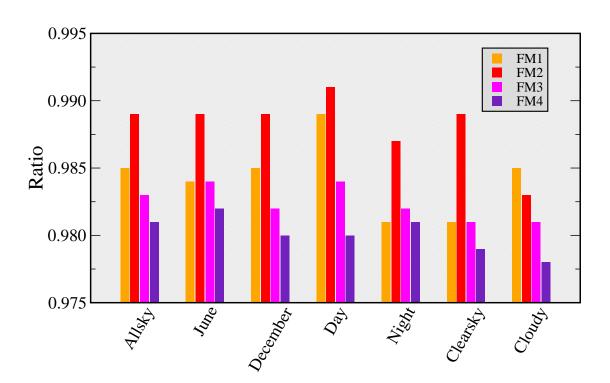
(cf. N. Clerbaux et al. to be submitted)

\sim		
Ove	rv	
0.00	1 1	

Longwave:

ops reminder

Comparisons


Methode

Instantaneous
 data

 Monthly mean data

summary

Aerosols

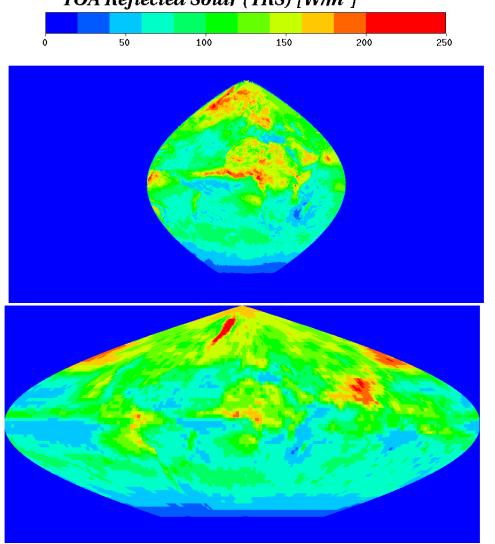
Comparisons of monthly means: CMSAF vs CERES ES9

Overview

ops reminder

Comparisons

Methode


 Instantaneous data

 Monthly mean data

summary

Aerosols

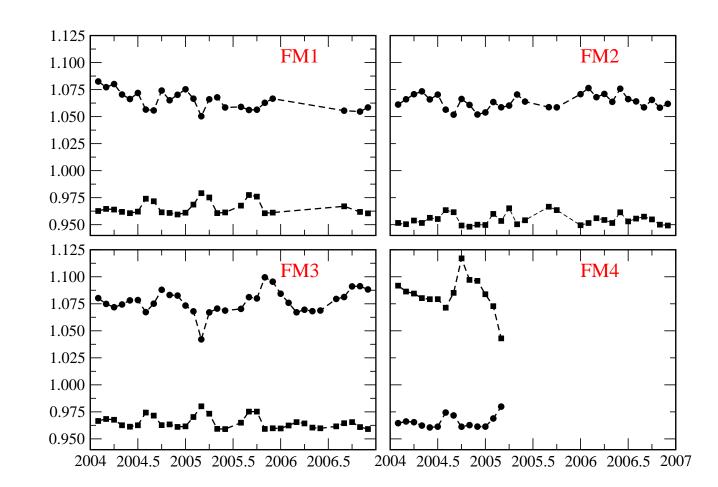
example: Total Reflected Solar flux, Monthly mean August 2005. **TOA Reflected Solar (TRS)** [W/m²]

Results:

Overview

ops reminder

Comparisons


Methode

 Instantaneous data

Monthly mean data

summary

Aerosols

Overview

ops reminder

Comparisons

Methode

Instantaneous
 data

Monthly mean data

summary

Aerosols

Where do the bumps (in thermal ratio) come from ?

ECLIPSE season \Rightarrow very few GERB data, mainly GERB-like

Month	% GERB files
Sept. 2004	18.6
April 2005	21.4
Sept. 2005	0

Overview

ops reminder

- Comparisons
- Methode
- Instantaneous
- data
- Monthly mean data
- ♦ summary
- Aerosols

★ Shortwave: CMSAF higher than CERES of about 7%
 ★ Longwave: CMSAF lower than CERES of about 3%
 ★ GERB-like: closer to CERES than GERB (even with corrections), they affect the mean products !

Left to do:

To sum up:

- Comparison with SRBAVG (better product ?!?)
- Comparison for daily mean and monthly mean diurnal cycle
- ★ Build GERB-like data tuned on GERB rather than CERES

What do we want ?

Simply get:

Overview

ops reminder

Comparisons

Aerosols

♦ Aim

Input data

Method

Results

perspectives

and

 \star

with

Direct Radiative Effect: $\langle \Phi \rangle = \langle F_{aerosol\,free} - F_{measured} \rangle$ Aerosol Optical Depth retrieved from SEVIRI

$$F_{\text{aerosol free}} = \frac{\text{albedo} \times \text{Solar}_{\text{const}} \times \cos(\theta_{\text{solar}})}{d^2}$$

 $\langle A \rangle = \frac{1}{N_{\text{meas}}} \sum_{i=1}^{N_{\text{meas}}} A_i \times \text{ratio}_{\text{day/night}}$

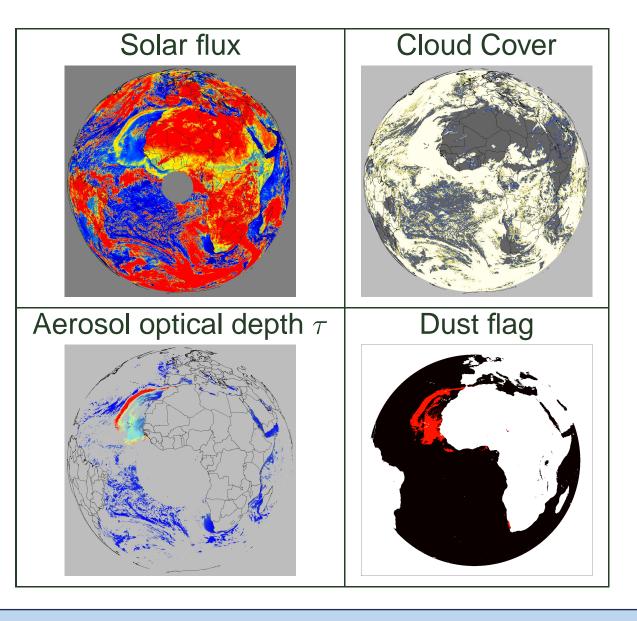
What do we have as input data ?

Data from 06/03/2004:

Overview

ops reminder

Comparisons


Aerosols

♣ Aim

✤ Input data

Method

- ✤ Results
- perspectives

Computing albedo

<u> </u>		
$() \vee 0$	ruow	
UVE	rview	

ops reminder

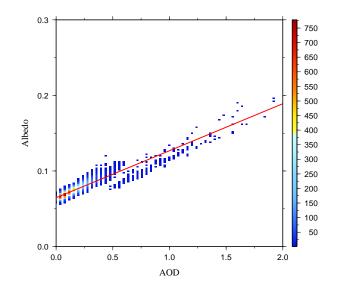
Comparisons

Aerosols

✤ Aim

Input data

Method


Results

perspectives

For each pixel, over a whole year, we only select clearsky or dust conditions, then:

 $albedo_{free} = albedo extrapolated for \tau = 0$

example pixel over Atlantic Ocean ($31^{\circ}W, 24.6^{\circ}N$), $\theta_{solar} = 10^{\circ}$, 2004:

We have then 210 maps per year corresponding to

- * 70 solar angles (1° of resolution)
 - 3 bands of retrieval: 0.6, 0.8 and $1.6 \mu m$

*

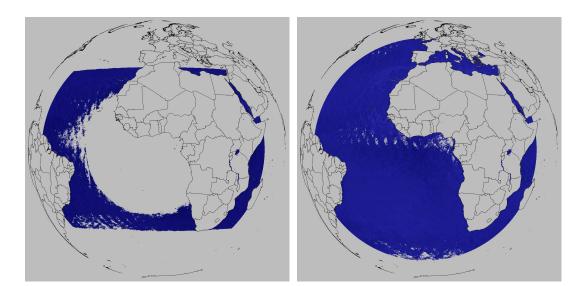
Examples for solar zenithal angle of $10^\circ,\,40^\circ$ and 60°

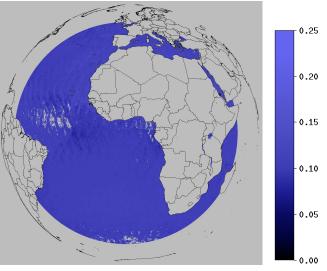
Overview

ops reminder

Comparisons

Aerosols

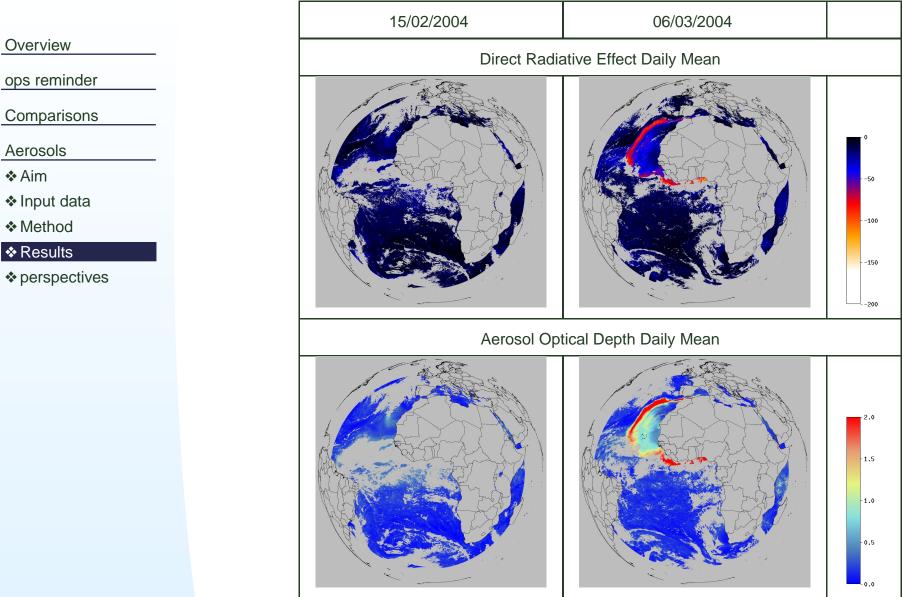

� Aim


Input data

Method

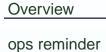
Results

perspectives



Overview

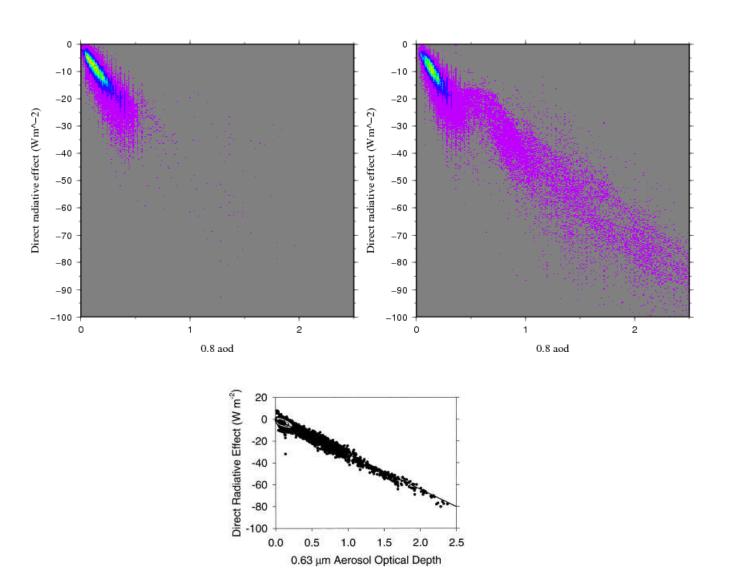
Aerosols ✤ Aim


Method ✤ Results

Direct radiative effect: first results

Direct radiative effect: comparisons

Aerosols


� Aim

Input data

Method

Results

perspectives

from N. Loeb and S. Kato, J. of Climate 15, 1474 (2002)

Overview	
ops reminder	
ops reminder	
Comparisons	
Aerosols	
♦ Aim	
 Input data 	

 \star

 \bigstar

- Method
- Results
- perspectives

Reduction of *cloud* contamination Processing from february 2004 till now Implementation of Monthly and Yearly mean Direct radiative effect due to clouds